a= percepatan benda yang diberi gaya (m/s2) CONTOH 4.3. Balok A bermassa 4 kg diletakkan di atas balok B yang bermassa 6 kg. Kemudian balok B ditarik dengan gaya F di atas lantai mendatar licin sehingga gabungan balok itu mengalami percepatan 1,8 m/s2. Jika tiba-tiba balok A terjatuh maka berapakah percepatan yang dialami oleh balok B saja?
Gaya gesek fg adalah gaya yang diakibatkan oleh dua benda yang permukaannya saling bersentuhan, dirumuskan fg = μ . N, di mana μ adalah koefisien gesek dan N adalah gaya normal. Apa kabar adik-adik? Semoga kalian selalu dalam keadaan sehat. Materi fisika kita kali ini akan membahas tentang salah satu jenis gaya, yaitu gaya gesek. Di sadari atau tidak, gaya gesek atau gesekan merupakan fenomena sehari-hari, kita semua sangat akrab dengan gaya yang satu ini, bahkan bisa dikatakan bahwa setiap saat kita pasti mengalaminya. Misalnya saja, kita bisa berjalan dan berlari berkat adanya gaya gesek ini. Tanpa gaya gesek, maka aktivitas itu mustahil bisa dilakukan. Lantas, apa sih hakikat dari gaya gesek itu dan apa penyebabnya? Nah, hal inilah yang akan dijelaskan dalam materi ini. Selain itu, akan dibahas pula rumus-rumus yang berlaku dalam gaya gesek lengkap dengan cara penggunaannya untuk menyelesaikan soal. Baiklah, kita mulai saja materinya... Daftar Isi 1Pengertian Gaya Gesek 2Simbol dan Satuan Gaya Gesek 3Rumus Gaya Gesek 4Jenis-Jenis Gaya Gesek Gesek Statis Gesek Kinetis 5Hal-Hal yang Mempengaruhi Gaya Gesek 6Pengaruh Gaya Gesek Terhadap Gerak Benda 7Contoh Gaya Gesek 8Keuntungan dan Kerugian Gaya Gesek Gaya Gesek Gaya Gesek 9Cara Memperkecil dan Memperbesar Gaya Gesek Memperkecil Gaya Gesek Memperbesar Gaya Gesek 10Manfaat Gaya Gesek 11Contoh Soal Gaya Gesek 12Kesimpulan Pengertian Gaya Gesek Apa yang dimaksud dengan gaya gesek? Dalam ilmu fisika, gaya gesek adalah gaya yang diakibatkan oleh dua benda yang permukaannya saling bersentuhan. Jadi, gaya gesek termasuk ke dalam jenis gaya sentuh, yang baru akan bekerja ketika terjadi sentuhan dua permukaan benda, sekaligus merupakan penyebab timbulnya gaya gesek itu sendiri. Gaya gesek akan selalu berlawanan arah terhadap kecenderungan arah gerak benda. Besar kecilnya gaya gesek ditentukan oleh tingkat kekasaran permukaan benda. Semakin kasar permukaan suatu benda, semakin besar nilai gaya geseknya. Sebaliknya, makin halus permukaan benda makin kecil gaya gesek yang terjadi. Penting diketahui bahwa gaya gesek bekerja di semua jenis zat, yaitu zat padat, zat cair, dan gas. Gaya gesek pada zat padat lebih besar dari gaya gesek zat cair dan gas. Gaya gesek pada zat cair disebut juga dengan gaya Stokes. Simbol dan Satuan Gaya Gesek Dalam fisika, gaya selalu disimbolkan dengan F atau f. Begitupun dengan gaya gesek, disimbolkan dengan fg, huruf "g" kecil menjadi tanda bahwa gaya yang dimaksud adalah gaya Sistem Satuan Internasional SI, gaya gesek dinyatakan dalam satuan Newton N.Berdasarkan jenis satuannya, gaya gesek merupakan besaran turunan. Selain itu, gaya gesek juga termasuk ke dalam besaran vektor. Rumus Gaya Gesek Gaya gesek adalah perkalian antara koefisien gesek dan gaya normal. Secara matematis, dirumuskan dengan persamaan fg = μ . N Oleh karena; N = m . g, maka rumus di atas bisa dituliskan lebih lanjut menjadi fg = μ . m . g Keterangan fg = gaya gesek N μ = koefisien gesekan N = gaya normal N m = massa benda kg g = percepatan gravitasi m/s2 Dari persamaan di atas, kita bisa turunkan pula rumus koefisien gesekan, yaitu μ = fg/N Catatan koefisien gesekan adalah besaran yang tidak memiliki satuan. Jenis-Jenis Gaya Gesek Gaya gesek terbagi menjadi dua, yaitu gaya gesek statis dan gaya gesek kinetis. Apa maksud dari kedua jenis gaya gesek tersebut? Yuk, mari kita bahas keduanya. 1. Gaya Gesek Statis Apa yang dimaksud dengan gaya gesek statis? Jadi, gaya gesek statis adalah gaya gesek antara dua benda sebelum keduanya bergerak. Dengan kata lain, gaya gesek statis adalah gaya gesek yang bekerja pada saat benda masih diam atau belum bergerak. Sebagai contoh, pernahkah kalian mendorong sebuah lemari yang berada di lantai datar? Pada saat mulai mendorong, lemari kadang-kadang tidak langsung bergerak. Padahal, gaya telah bekerja padanya. Hal ini disebabkan oleh adanya gaya gesek statis yang bekerja antara kaki-kaki lemari dengan lantai. Di sini, gaya gesek statis mengimbangi dorongan yang kita berikan. Oleh karena itulah, gaya gesek statis sering juga diartikan sebagai gaya yang dibutuhkan untuk mempertahankan benda agar tetap diam. Gaya gesek statis akan berubah menjadi maksimum tepat ketika benda akan bergerak. Berdasarkan uraian di atas, maka ciri-ciri gaya gesek statis adalah bekerja pada benda diam sampai pada saat akan bergerak. Rumus Gaya Gesek Statis Besarnya gaya gesek statis bergantung pada koefisien gesek statis dan gaya normal. Secara matematis, dirumuskan dengan persamaan fs = μs . N, atau fs = μs . m . g Keterangan fs = gaya gesek statis N μs = koefisien gesek statis N = gaya normal N m = massa benda kg g = percepatan gravitasi m/s2 Sementara itu, koefisien gesek statis dirumuskan μs = fs/N Gaya Gesek Statis pada Bidang Miring Sekarang, kita akan gunakan rumus di atas untuk menganalisis gaya gesek statis pada bidang miring. Misalnya, balok di atas ditempatkan pada bidang miring, seperti yang tampak pada gambar di bawah ini Rumus gaya gesek statis pada bidang miring dituliskan dengan persamaan matematis fs = μs . m . g cos α Dari gambar di atas, terlihat bahwa jika sin α ≤ fs, maka benda akan tetap diam atau tidak meluncur ke bawah. Contoh Gaya Gesek Statis Berikut ini adalah beberapa contoh gaya gesek statis Gaya gesek antara lemari yang didorong tetapi belum bergerak dengan lantai. Gaya gesek antara ban mobil yang didorong tetapi belum bergerak dengan aspal. Gaya gesek antara benda dan bidang miring sehingga tidak meluncur ke bawah. 2. Gaya Gesek Kinetis Dinamis Apa yang dimaksud dengan gaya gesek kinetis? Dalam ilmu fisika, gaya gesek kinetis adalah gaya gesek yang bekerja setelah benda bergerak, disebut juga gaya gesek dinamis. Gaya gesek kinetis merupakan peralihan dari gaya gesek statis. Pada saat gaya gesek statis sudah tidak mampu lagi menahan benda untuk tetap diam, maka ia akan berubah menjadi gaya gesek kinetis. Kita pakai kembali ilustrasi lemari di atas. Awalnya, lemari tetap dalam keadaan diam meskipun dorongan telah diberikan karena adanya gaya gesek statis yang mengimbangi dorongan tersebut. Namun, ketika dorongan diperbesar, gaya gesek statis juga akan membesar dan mencapai puncaknya tepat pada saat benda akan bergerak. Setelah lemari mulai bergeser, maka gaya gesek statis langsung menghilang, selanjutnya beralih ke gaya gesek kinetis. Nilai gaya gesek kinetis selalu lebih kecil dari gaya gesek statis. Berdasarkan uraian di atas, maka ciri-ciri gaya gesek kinetis adalah bekerja pada benda tepat setelah bergerak. Rumus Gaya Gesek Kinetis Besarnya gaya gesek kinetis bergantung pada koefisien gesek kinetis dan gaya normal. Secara matematis, dirumuskan dengan persamaan fk = μk . N, atau fk = μk . m . g Keterangan fk = gaya gesek kinetis N μk = koefisien gesek kinetis N = gaya normal N m = massa benda kg g = percepatan gravitasi m/s2 Sementara itu, koefisien gesek kinetis dirumuskan μk = fk/N Gaya Gesek Kinetis pada Bidang Miring Pada kasus benda pada bidang miring, jika sin α > fs atau melampaui gaya gesek statis, maka benda akan bergerak dan meluncur ke bawah. Ketika kondisi itu terjadi, maka gaya gesek yang bekerja adalah gaya gesek kinetis. Perhatikan gambar berikut ini! Rumus gaya gesek kinetis pada bidang miring dituliskan dengan persamaan matematis fk = μk . m . g cos α Sementara itu, percepatan benda pada saat meluncur ke bawah dapat dicari dengan menurunkan persamaan Hukum 2 Newton F = m . a sin α - fk = m . a sin α - μk . m . g cos α = m . a a = sin α - μk cos α g Keterangan a = percepatan benda pada bidang miring m/s2 Contoh Gaya Gesek Kinetis Berikut ini adalah beberapa contoh gaya gesek kinetis Gaya gesek antara telapak kaki dengan lantai pada saat berjalan. Gaya gesek antara ban mobil dan aspal pada saat melaju Gaya gesek antara gear mesin pada saat berputar Jadi, perbedaan antara gaya gesek statis dan gaya gesek kinetis terletak pada keadaan benda, apakah diam atau bergerak. Jika benda diam, maka yang bekerja adalah gaya gesek statis. Namun, jika bergerak artinya yang sedang bekerja adalah gaya gesek kinetis. Hal-Hal yang Mempengaruhi Gaya Gesek Gaya gesek dipengaruhi oleh tingkat kekasaran permukaan bidang sentuh dan berat benda. Berikut ini penjelasannya 1. Kekasaran Permukaan Benda Jika permukaan suatu benda semakin kasar, maka semakin besar gaya geseknya. Begitupun sebaliknya, semakin halus permukaan suatu benda, maka semakin kecil gaya geseknya. Besaran yang menyatakan tingkat kekasaran permukaan benda disebut koefisien gesek. Nilai koefisien gesek menunjukkan tingkat kekasaran permukaan suatu benda. Jadi, salah satu cara memperkecil gaya gesek adalah memperhalus permukaan benda. 2. Berat Benda Gaya gesek bertambah seiring dengan pertambahan berat benda. Artinya, semakin berat suatu benda, maka semakin besar gaya geseknya. Tekanan pada benda karena adanya gaya berat membuat kontak antara permukaan dua benda semakin rapat. Akibatnya, gaya gesek menjadi semakin besar. Jadi, cara kedua memperkecil gaya gesek adalah mengurangi berat benda. Pengaruh Gaya Gesek terhadap Gerak Benda Sifat dari gaya gesek adalah berlawanan arah terhadap kecenderungan arah gerak benda. Akibatnya, gaya gesek menghambat pergerakan benda. Misalnya, gaya gesek antara bola yang menggelinding dengan tanah mengakibatkan bola melambat kemudian berhenti. Hal ini disebabkan oleh gesekan antara bola dengan tanah. Akibat lainnya adalah gaya gesek akan selalu menghasilkan usaha yang negatif karena berlawanan dengan arah gerak atau perpindahan benda. Selain itu, adanya gaya gesek menyebabkan energi yang dibutuhkan untuk menggerakkan sebuah benda semakin Gaya Gesek Berikut ini adalah beberapa contoh gaya gesek pada zat padat, cair, dan gas udara 1. Contoh Gaya Gesek Zat Padat Gaya gesek antara sepatu dan lantai Gaya gesek antara bola dan rumput Gaya gesek antara ban dan aspal Gaya gesek antara gear mesin kendaraan 2. Contoh Gaya Gesek Zat Cair Gaya gesek antara perenang dan air kolam Gaya gesek antara bagian bawah perahu dan air laut Gaya gesek pada kelereng yang dijatuhkan ke dalam air 3. Contoh Gaya Gesek Zat Gas Udara Gaya gesek antara balon dan udara Gaya gesek antara sayap burung dan udara Gaya gesek antara layar perahu dan udara Keuntungan dan Kerugian Gaya Gesek Gaya gesek bisa mendatangkan keuntungan dan kerugian. Berikut ini akan kita bahas keduanya 1. Keuntungan Gaya Gesek Gaya gesek antara kaki dengan lantai menjadikan orang dapat berjalan. Gaya gesek pada rem akan memperlambat laju kendaraan. Gaya gesek antara ban dengan permukaan jalan menjadikan kendaraan dapat melaju dan tidak tergelincir. 2. Kerugian Gaya Gesek Gaya gesek antara ban dengan jalan akan mengakibatkan ban cepat halus. Gaya gesek antara komponen bagian dalam mesin mengakibatkan mesin cepat rusak. Gaya gesek antara roda dan porosnya mengakibatkan putaran roda jadi berat. Cara Memperkecil dan Memperbesar Gaya Gesek Untuk tujuan tertentu, terkadang gaya gesek harus diperkecil atau diperbesar. Berikut ini akan dibahas cara memperkecil dan memperbesar gaya gesek 1. Cara Memperkecil Gaya Gesek Memperhalus permukaan benda. Menggunakan pelumas. Menggunakan bentuk yang ramping dan runcing. 2. Cara Memperbesar Gaya Gesek Memperkasar permukaan benda. Melapisi permukaan benda dengan karet. Mengubah bentuk benda menjadi seperti lembaran Manfaat Gaya Gesek Berikut ini adalah beberapa manfaat gaya gesek dalam kehidupan sehari-hari Gaya gesek dapat menghasilkan panas, misalnya gesekan antara telapak tangan dengan badan bermanfaat untuk menghangatkan badan. Gaya gesek dapat mengikis benda, bermanfaat pada saat mengamplas kayu. Gaya gesek dapat mencegah tubuh tidak tergelincir, misalnya gaya gesek antara alas sepatu dengan lantai pada saat berjalan. Contoh Soal Gaya Gesek Berikut ini adalah beberapa contoh soal tentang gaya gesek Contoh Soal 1 Gaya Gesek Statis Sebuah balok bermassa 2 kg terletak di atas bidang datar kasar. Balok diberi gaya tarik sebesar 4 N mendatar seperti pada gambar. Jika koefisien gesekan statis antara balok dan lantai 0,4, tentukan a. besar gaya gesek statis maksimum. b. besar gaya gesek yang memengaruhi benda. Jawaban Diketahui m = 2 kg F = 4 N μs = 0,4 g = 10 m/s2 Ditanyakan a. fs max......? b. fs......? Penyelesaian a. besar gaya gesek statis maksimum fs max fs max = μs . m . g = 0,4 . 2 . 10 = 8 N b. besar gaya gesek yang memengaruhi benda fs Gaya luar yang memengaruhi benda hanya F = 4 N. Besar gaya tersebut lebih kecil daripada gaya gesek statis sehingga balok masih tetap kasus ini, besarnya gaya gesek sama dengan besarnya gaya luar, fs = F = 4 N. Jadi, gaya gesek statis yang berfungsi pada benda adalah sebesar 4 N. Contoh Soal 2 Gaya Gesek Statis dan Kinetis Sebuah balok kayu diletakkan pada sebuah meja. Massa balok 4 kg, percepatan gravitasi 10 m/s2, koefisien gesekan antara balok dan meja adalah 0,2 dan 0,4. Tentukan gaya gesek benda jika ditarik dengan gaya 20 N. Jawaban Diketahui m = 4 kg g = 10 m/s2 μs = 0,4 μk = 0,2 F = 20 N Ditanyakan Gaya gesek benda...? Penyelesaian Pertama, kita cari tahu dulu apakah benda setelah ditarik tetap diam atau bergerak fs max = μs . m . g = 0,4 . 4 . 10 = 16 N Jadi, besar gaya gesek statis maksimum benda adalah 16 N. Artinya, benda bergerak karena gaya tarik 20 N lebih besar dari gaya gesek statis maksimum yang hanya 16 N. Setelah benda bergerak, maka selanjutnya yang bekerja gaya gesek kinetis fk = μk . m . g = 0,2 . 4 . 10 = 8 N Contoh Soal 3 Koefisien Gesek pada Bidang Miring Sebuah balok kayu bermassa m bergerak mengikut bidang miring kasar dengan kecepatan konstan. Jika diketahui sudut kemiringan bidang terhadap horisontal adalah 300. Hitunglah koefisien gesek kinetis antara bidang dan balok. Jawaban Diketahui Balok bergerak dengan kecepatan konstan, artinya F = 0. α = 300 Ditanyakan μk......? Penyelesaian Gaya yang menyebabkan balok bergerak adalah F = sin α, sehingga F = fk sin α = μk cos α μk = sin α/ cos α μk = tan α = tan 300 = 0,58 Jadi, besar koefisien gesek kinetis antara bidang dan balok adalah 0,58. Contoh Soal Mencari Besar Sudut Seorang menarik koper bermassa 15 kg dengan seutas tali sedemikian rupa sehingga koper bergerak dengan kelajuan konstan. Tali membentuk sudut α terhadap bidang horizontal. Jika gaya yang dikerjakan oleh orang tersebut adalah 30 N dan gaya gesek antara koper dengan bidang horizontal 24 N, berapakah nilai α? Jawaban Diketahui m = 15 kg F = 30 N fk = 24 N g = 10 m/s2 Ditanyakan α.....? Penyelesaian Kelajuan konstan, artinya F = 0 F cos α - fk = 0 F cos α = fk 30 cos α = 24 cos α = 24/30 = 0,8 α = 370 Jadi nilai α adalah 370. Kesimpulan Jadi, gaya gesek fg adalah gaya yang diakibatkan oleh dua benda yang permukaannya saling bersentuhan, dirumuskan fg = μ . N, di mana μ adalah koefisien gesek dan N adalah gaya normal. Gimana adik-adik, udah paham kan materi gaya gesek di atas? Jangan lupa lagi yah. Sekian dulu materi kali ini, bagikan agar teman yang lain bisa membacanya. Terima kasih, semoga bermanfaat.
Padasaat diberi gaya F 2 sebesar 25 N, maka percepatan yang dialami benda. menjadi: a 2. F2 = m2. 25 N = 5 kg = 5 m/s2 2. Sebuah gaya F dikerjakan pada sebuah benda bermassa m, menghasilkan. percepatan 10 m/s2 . Jika gaya tersebut dikerjakan pada benda kedua dengan. massa m , percepatan yang dihasilkan 15 m/s 2 2 . Tentukan: a. perbandingan m
BerandaPerhatikan gambar berikut! Jika gaya gesek b...PertanyaanPerhatikan gambar berikut! Jika gaya gesek benda dengan lantai diabaikan, maka besar dan arah percepatan yang terjadi adalah ....Perhatikan gambar berikut! Jika gaya gesek benda dengan lantai diabaikan, maka besar dan arah percepatan yang terjadi adalah .... YMY. MaghfirahMaster TeacherJawabanjawaban yang benar adalah yang benar adalah Ditanyakan a .... ? Penyelesaian Untuk menentukan percepatan dan arah gerak benda, maka dapat digunakan persamaan sebagai berikut. Jadi, jawaban yang benar adalah Ditanyakan a .... ? Penyelesaian Untuk menentukan percepatan dan arah gerak benda, maka dapat digunakan persamaan sebagai berikut. Jadi, jawaban yang benar adalah B. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Berapakahbesar gaya kontak antara balok A dan B jika diberikan gaya F = 12 N kepada benda A? (Diketahui 3 kg, 2 kg, 1 kg besarnya koefisien gesek kinetik antara balok dan bidang miring adalah? A. 0,25 B. 0,40 C. 0,50 D. 0,60 sedangkan gaya gesekan tali dengan katrol diabaikan, maka percepatan kedua benda adalah? A. 20,0 . B. 10,0 . C
Coba kalian dorong sebuah benda di rumah yang menurut kalian berat, Apa yang kalian rasakan? Jika kalian mendorongnya, mungkin akan terasa berat. Akan tetapi, jika teman-teman kalian membantu untuk mendorong benda tersebut, mungkin akan terasa lebih ringan. Mengapa hal ini bisa terjadi? Semakin besar gaya yang diberikan maka semakin mudah kalian mendorongnya. Semua yang kalian lakukan tersebut terjadi karena terdapat gaya yang bekerja pada benda. Teori mengenai dinamika gerak ini diterangkan oleh seorang ilmuwan Fisika yang bernama Isaac Newton. Dalam artikel kali ini, kalian akan disuguhkan beberapa contoh soal dan pembahasan tentang tiga Hukum Newton secara berurutan. Hukum pertama, memperkenalkan konsep kelembaman yang telah diusulkan sebelumnya oleh Galileo. Hukum kedua, menghubungkan percepatan dengan penyebab percepatan, yakni gaya. Hukum ketiga, merupakan hukum mengenai aksi-reaksi. Newton menuliskan ketiga hukum geraknya dalam sebuah buku yang terpenting sepanjang sejarah, yakni Philosophiae Naturalis Principia Mathematica, yang dikenal sebagai principia. Agar materi ketiga Hukum Newton lebih ringkas, berikut ini ringkasannya dalam bentuk tabel. Perihal Hukum I Newton Hukum II Newton Hukum III Newton Bunyi Jika resultan gaya yang bekerja pada benda sama dengan nol, maka benda yang diam akan tetap diam dan benda yang bergerak akan terus bergerak lurus beraturan GLB. Jika satu gaya atau lebih bekerja pada suatu benda, maka percepatan yang dihasilkan berbanding lurus dan searah dengan resultan gaya dan berbanding terbalik dengan massa benda. Jika suatu gaya aksi diberikan pada suatu benda , maka benda tersebut akan memberikan gaya reaksi yang sama besar dan berlawanan arah dengan gaya yang diberikan. Rumus F = 0 F = ma Faksi = −Freaksi Aplikasi Ketika sedang naik mobil atau kendaraan lainnya. Jika mobil yang semula diam, kemudian secara tiba-tiba mobil bergerak, badan kalian akan terdorong ke belakang. Akan tetapi, jika semula mobil melaju kencang kemudian direm mendadak, maka badan kalian akan terdorong ke depan. Batu yang memiliki massa berbeda jika di tarik tentunya akan terasa ringan menarik batu yang massanya lebih kecil. Sedangkan pada batu yang massa lebih besar, membutuhkan gaya yang lebih besar untuk bisa menggerakkannya. Ketika kita menginjakkan kaki ke tanah, berarti kita memberikan sebuah gaya dorong terhadap tanah tersebut. Gaya yang kaki kita berikan kepada tanah ini merupakan gaya aksi. Kemudian sebagai respon dari gaya aksi yang kita berikan, maka tanah memberikan gaya dorong ke kaki kita yang membuat kaki bisa terangkat. Gaya dorong yang diberikan tanah ini adalah gaya reaksi. Proses ini berlangsung secara terus menerus sehingga membuat kita dapat berjalan di atas tanah. Contoh Soal Hukum 1 Newton dan Pembahasannya 1. Sebuah balok bermassa 5 kg berat w = 50 N digantung dengan tali dan diikatkan pada atap. Jika balok diam maka berapakah tegangan talinya? Penyelesaian Gaya-gaya yang bekerja pada balok seperti gambar di bawah ini, karena balok diam, maka berlaku hukum I Newton yaitu sebagai berikut. F = 0 T – w = 0 T – 50 = 0 T = 50 N Jadi, gaya tegangan tali yang bekerja pada balok tersebut adalah 50 Newton. 2. Sebuah benda bermassa 40 kg ditarik melalui katrol sehingga memiliki posisi seperti yang diperlihatkan pada gambar a di bawah ini. Jika sistem itu diam, maka berapakah gaya F? Penyelesaian Benda yang bermassa akan memiliki berat. w = mg w = 40 kg × 10 m/s2 w = 400 N pada sistem itu bekerja tiga gaya yaitu w, F, dan T yang tidak segaris, sehingga menentukan resultannya dapat digunakan sumbu koordinat XY metode analisis seperti pada gambar b di atas. Sistem diam berarti berlaku Hukum 1 Newton sebagai berikut. Pada sumbu-Y Fy = 0 T sin 53o – w = 0 T0,8 – 400 = 0 0,8T = 400 T = 400/0,8 T = 500 N Pada sumbu-X Fx = 0 F – T cos 53o = 0 F – 5000,6 = 0 F – 300 = 0 F = 300 N Jadi, gaya F yang bekerja pada sistem tersebut adalah 300 Newton. 3. Benda bermassa 10 kg diikat tali dan dibentuk sistem seperti pada gambar a berikut ini. Jika sistem itu diam dan percepatan gravitasi g = 10 m/s2maka tentukan tegangan tali T1 dan T2! Penyelesaian Berat benda adalah sebagai berikut. w = mg w = 10 kg × 10 m/s2 w = 100 N Dengan menggunakan metode analisis sama seperti pada contoh soal sebelumnya di mana diagram gaya ditunjukkan pada gambar b, maka resultan gaya yang bekerja pada sistem ini adalah sebagai berikut. Pada sumbu-Y Fy = 0 T1 sin 60o + T2 sin 30o – w = 0 T1 1/2√3 + T2 sin 1/2 – 100 = 0 1/2√3 T1 + 1/2 T2 = 100 Kedua ruas dikali 2 √3 T1 + T2 = 200 T2 = 200 – √3 T1 ……….. pers. a Pada sumbu-X T2 cos 30o – T1 cos 60o = 0 T2 1/2√3 – T1 1/2 = 0 1/2√3 T2 – 1/2T1 = 0 ……….. pers. b {subtitusikan persamaan a ke persamaan b} 1/2√3200 – √3 T1 – 1/2T1 = 0 100√3 – 3/2T1 – 1/2T1 = 0 3/2T1 + 1/2T1 = 100√3 4/2T1 = 100√3 2T1 = 100√3 T1 = 50√3 N Untuk memperoleh nilai T2, kita subtitusikan nilai T1 = 50√3 ke persamaan a sehingga kita peroleh nilai sebagai berikut. T2 = 200 – √3 T1 T2 = 200 – √350√3 T2 = 200 – 150 T2 = 50 N Dengan demikian, nilai T1 dan T2 berturut-turut adalah 50√3 N dan 50 N. 4. Balok bermassa 20 kg berada di atas bidang miring licin dengan sudut kemiringan 30o. Jika Ucok ingin mendorong ke atas sehingga kecepatannya tetap maka berapakah gaya yang harus diberikan oleh Ucok? Penyelesaian m = 20 kg g = 10 m/s2 w = mg = 20 × 10 = 200 N α = 30o gaya dorong Ucok F harus dapat mengimbangi proyeksi gaya berat. Lihat gambar di bawah ini. Balok bergerak ke atas dengan kecepatan tetap berarti masih berlaku hukum I Newton sehingga memenuhi persamaan berikut. F = 0 F – w sin 30o = 0 F – 2001/2 = 0 F – 100 = 0 F = 100 N Jadi, gaya yang harus diberikan pada balok agar balok bergerak dengan kecepatan tetap adalah sebesar 100 N. 5. Dhania menarik beban dengan bantuan katrol seperti pada gambar a di bawah ini. Pada saat gaya yang diberikan F = 125 N ternyata beban dapat terangkat dengan kecepatan tetap. g = 10 m/s2. Jika gaya gesek katrol dan massa tali dapat diabaikan maka berapakah massa beban tersebut? Penyelesaian Diagram gaya yang bekerja pada sistem ini adalah seperti yang ditunjukkan pada gambar b. Pada beban bekerja dua buah gaya yaitu gaya berat w dan gaya tegangan tali T. Besar gaya tegangan tali ini besarnya sama dengan gaya tarik F. Karena kecepatan beban yang bergerak ke atas adalah tetap, maka berlaku hukum II Newton sebagai berikut. F = 0 T – w = 0 F – mg = 0 125 – m10 = 0 125 – 10m = 0 10m = 125 m = 125/10 m = 12,5 kg Jadi, massa beban tersebut adalah 12,5 kg. Contoh Soal Hukum 2 Newton dan Pembahasannya 1. Sebuah truk dapat menghasilkan gaya sebesar 7000 N. Jika truk tersebut dapat bergerak dengan percepatan 3,5 m/s2, maka tentukan massa truk tersebut! Penyelesaian Diketahui F = 7000 N a = 3,5 m/s2 Ditanyakan m = …? Jawab m = 2000 kg = 2 ton Jadi, massa truk tersebut adalah 2 ton. 2. Balok A bermassa 4 kg diletakkan di atas balok B yang bermassa 6 kg. Kemudian balok B ditarik dengan gaya F di atas lantai mendatar licin sehingga gabungan balok itu mengalami percepatan 1,8 m/s2. Jika tiba-tiba balok A terjatuh maka berapakah percepatan yang dialami oleh balok B saja? Penyelesaian Diketahui mA = 4 kg mB = 6 kg a1 = 1,8 m/s2 Ditanyakan a2 = …? Jawab Keadaan balok pertama tergantung dan kedua A jatuh dapat di gambarkan seperti pada gambar di bawah ini. Pada kedua kejadian berlaku hukum II Newton sebagai berikut. F = ma F = mA + mBa1 F = 4 + 61,8 F = 18 N Gaya F juga bekerja pada keadaan kedua sehingga diperoleh F = mBa2 18 = 6a2 berarti a2 = 3 m/s2 3. Sebuah benda bermassa 2 kg bergerak dengan kecepatan awal 5 m/s di atas bidang datar licin, kemudian benda tersebut diberi gaya tetap searah dengan gerak benda. Setelah menempuh jarak 4 m, kecepatan benda menjadi 7 m/s. Tentukan besar gaya tersebut! Penyelesaian Diketahui v0 = 5 m/s vt = 7 m/s m = 2 kg s = 4 m Ditanyakan F = …? Jawab Persamaan gerak 2as = vt2 – v02 a = 2,4 m/s2 Menurut Hukum II Newton F = ma F = 2 kg3 m/s2 F = 6 kgm/s2 = 6 N Jadi, gaya yang bekerja pada benda adalah 6 N. 4. Jika suatu benda diberi gaya 20 N, benda tersebut memiliki percepatan 4 m/s2. Berapakah percepatan yang dialami benda tersebut jika diberi gaya 25 N? Penyelesaian Pada kasus ini, massa benda m adalah tetap. Ketika diberi gaya F1 = 20 N, benda mengalami percepatan a1 = 4 m/s2, sehingga massa benda m = 5 kg Pada saat diberi gaya F2 sebesar 25 N, maka percepatan yang dialami benda menjadi a2 = 5 m/s2 5. Sebuah gaya F dikerjakan pada sebuah benda bermassa m, menghasilkan percepatan 10 m/s2. Jika gaya tersebut dikerjakan pada benda kedua dengan massa m2, percepatan yang dihasilkan adalah 15 m/s2. Tentukan a. Perbandingan m1 dan m2. b. Percepatan yang dihasilkan gaya F1, apabila m1 dan m2 digabung. Penyelesaian a. Gaya F pada benda 1 dengan massa m1 menghasilkan percepatan a1 = 10 m/s2, maka diperoleh Gaya F pada benda II dengan massa m2, menghasilkan percepatan a2 = 15 m/s2, maka m1 m2 = 1 × 30 1 × 30 10 15 b. Apabila massa digabung, maka m = m1 + m2 Percepatan yang dihasilkan adalah a = 6 m/s2. Contoh Soal Hukum 3 Newton dan Pembahasannya 1. Sebuah buku diletakkan di atas meja. Pada sistem benda tersebut akan bekerja gaya-gaya seperti pada gambar di bawah ini. Ada empat gaya yang bekerja pada sistem tersebut yaitu □ w = berat buku. □ N = gaya tekan normal meja terhadap buku. □ N’= gaya tekan normal buku pada meja. □ Fg = gaya gravitasi bumi pada buku. Tentukan pasangan gaya yang termasuk aksi reaksi! Penyelesaian Pasangan gaya aksi-reaksi memenuhi sifat sama besar, berlawanan arah dan bekerja pada dua benda. Dari sifat di atas dapat ditentukan dua pasangan aksi-reaksi yaitu □ w dengan Fg □ N dengan N’ w dan N bukan aksi-reaksi karena bekerja pada satu benda buku tetapi hubungan N = w merupakan hukum I Newton yaitu F = 0. 2. Seekor ikan yang bergerak dengan siripnya juga terjadi gaya aksi reaksi. Tentukan pasangan aksi-reaksi yang ada. Penyelesaian Gaya aksi gaya dorong yang diberikan sirip ikan kepada air. Gaya reaksi gaya dorong yang diberikan air kepada sirip ikan sehingga ikan dapat bergerak. 3. Dua balok m1 dan m2 yang bersentuhan mula-mula diam di atas lantai licin seperti yang ditunjukkan pada gambar di bawah ini. Jika m1 = 70 kg, m2 = 30 kg dan pada balok pertama dikerjakan gaya sebesar 200 N, maka tentukanlah percepatan masing-masing balok dan gaya kontak antarbalok tersebut. Jawab Diketahui m1 = 70 kg m2 = 30 kg F = 200 N Ditanyakan Percepatan dan gaya kontak. Keadaan benda 1 dan 2 saling bersentuhan sehingga akan timbul gaya kontak atau gaya aksi reaksi berdasarkan Hukum III Newton. Supaya lebih jelas, perhatikan gambar berikut ini. F12 adalah gaya aksi yang diberikan balok 1 kepada balok 2 bekerja pada balok 2. Sedangkan F21 adalah gaya reaksi yang diberikan balok 2 kepada balok 1 bekerja pada balok 1. Kedua gaya ini memiliki besar yang sama. Untuk menentukan besar percepatan kedua balok dan juga gaya kontak kita tinjau persamaan gerak masing-masing balok menggunakan Hukum II Newton sebagai berikut. ∎ Tinjau Balok 1 Karena lantai licin maka tidak ada gaya gesek yang bekerja, sehingga resultan gaya pada sumbu-Y tidak perlu diuraikan. FX = ma F – F21 = m1a ............... Pers. 1 ∎ Tinjau Balok 2 FX = ma F12 = m2a ............... Pers. 2 Karena F12 = F21, maka kita dapat mensubtitusikan persamaan 2 ke dalam persamaan 1 sebagai berikut. F – m2a = m1a F = m1a + m2a F = m1 + m2a a = F/m1 + m2 ............... Pers. 3 Dengan memasukkan nilai yang diketahui dalam soal ke dalam persamaan 3, maka kita peroleh besar percepatan kedua balok sebagai berikut. a = 200/70 + 30 a = 200/100 a = 2 m/s2 Jadi, besar percepatan kedua balok adalah 2 m/s2. Untuk menentukan gaya kontak antara balok 1 dan 2, kita subtitusikan nilai percepatan yang kita peroleh ke dalam persamaan 2 sebagai berikut. F12 = m2a F12 = 302 F12 = 60 N Dengan demikian, besar gaya kontak antarbalok adalah 60 N. 4. Balok A dan balok B terletak di atas permukaan bidang miring licin dengan sudut kemiringan 37°. Massa balok A 40 kg dan massa balok B 20 kg. Kemudian balok A didorong dengan gaya F sebesar 480 N seperti yang diperlihatkan pada gambar di bawah ini. Tentukan besar percepatan gerak kedua balok dan juga gaya kontak antara balok A dan balok B. Jawab Diketahui mA = 40 kg mB = 20 kg F = 480 N θ = 37° g = 10 m/s2 Ditanyakan Percepatan dan gaya kontak. Perhatikan gambar di bawah ini. FAB adalah gaya aksi yang diberikan balok A kepada balok B, sedangkan FBA adalah gaya reaksi yang diberikan balok B kepada balok A. Kedua gaya tersebut merupakan gaya kontak yang besarnya sama. Lalu untuk menentukan besar percepatan kedua balok dan juga gaya kontak, kita tinjau persamaan gerak masing-masing balok menggunakan Hukum II Newton sebagai berikut. ∎ Tinjau Balok A Karena bidang miring licin maka tidak ada gaya gesek yang bekerja, sehingga resultan gaya pada sumbu-Y tidak perlu diuraikan. FX = ma F – wA sin θ – FBA = mAa F – mAg sin θ – FBA = mAa ............... Pers. 1 ∎ Tinjau Balok B FX = ma FAB – wA sin θ = mBa FAB – mBg sin θ = mBa FAB = mBa + mBg sin θ ............... Pers. 2 Karena FAB = FBA, maka kita dapat mensubtitusikan persamaan 2 ke dalam persamaan 1 sebagai berikut. F – mAg sin θ – mBa + mBg sin θ = mAa F – mAg sin θ – mBa – mBg sin θ = mAa F – mAg sin θ – mBg sin θ = mAa + mBa F – g sin θmA + mB = mA + mBa a = [F – g sin θmA + mB]/mA + mB a = [F/mA + mB] – g sin θ ............... Pers. 3 Dengan mensubtitusikan nilai-nilai yang diketahui dalam soal ke dalam persamaan 3, maka kita peroleh besar percepatan kedua balok sebagai berikut. a = [480/40 + 20] – 10 sin 37° a = 480/60 – 100,6 a = 8 – 6 a = 2 m/s2 Jadi, besar percepatan kedua balok adalah 2 m/s2. Untuk menentukan gaya kontak antara balok A dan B, kita subtitusikan nilai percepatan yang kita peroleh ke dalam persamaan 2 sebagai berikut. FAB = mBa + mBg sin θ FAB = 202 + 2010sin sin 37° FAB = 40 + 2000,6 FAB = 40 + 120 FAB = 160 N Dengan demikian, besar gaya kontak antara balok A dan balok B adalah 160 N.
Contoh2 : Dua buah benda masing-masing m 1 = 30 kg dan m 2 = 70 kg dihubungkan dengan tali dan katrol sama seperti soal nomor 1 di atas. Jika massa katrol diabaikan dan koefisien gesekan antara benda pertama dan meja adalah 0,4 maka percepatan yang dialami kedua benda tersebut adalah .. Dik : m 1 = 30 kg, m 2 = 70 kg, μ = 0,4.

Pada kesempatan kali ini, kita akan membahas tentang kumpulan soal dan pembahasan tentang gerak benda di bidang datar. Berbicara mengenai gerak, tentu selalu ada kaitannya dengan penyebab terjadinya gerak tersebut. Suatu benda yang mula-mula diam kemudian menjadi bergerak atau mula-mula bergerak menjadi diam itu disebabkan oleh pengaruh gaya. Konsep dan kaitan antara gaya dan gerak benda pertama kali dijelaskan oleh Sir Isaac Newton dalam 3 hukumnya yang terkenal. Selain itu, gerak benda di bidang datar terutama untuk bidang kasar juga selalu berkaitan dengan gaya gesek. Oleh karena itu, sebelum kita membahas soal, kita bahas terlebih dahulu konsep tentang Hukum Newton dan gaya gesek yaitu sebagai berikut. Konsep Hukum Newton Hukum I Newton Hukum II Newton Hukum III Newton F = 0 F = ma Faksi = −Freaksi Keadaan benda diam v = 0 m/s bergerak lurus beraturan atau GLB v = konstan Keadaan benda benda bergerak lurus berubah beraturan atau GLBB v ≠ konstan Sifat gaya aksi reaksi sama besar berlawanan arah terjadi pada 2 objek berbeda Gaya Gesek Statis Gaya Gesek Kinetis fs = μs N fk = μk N Bekerja pada benda diam v = 0 m/s tepat akan bergerak fs maksimum Bekerja pada benda bergerak baik GLB maupun GLBB Hubungan Gaya Gesek dan Gerak Benda Besar Gaya Luar Keadaan Benda Jika F fs maksimum Bergerak, berlaku Hukum II Newton dan bekerja gaya gesek kinetik fk Oke, jika kalian sudah paham mengenai konsep Hukum Newton dan gaya gesek, kini saatnya kita bahas beberapa soal tentang gerak benda di bidang datar. Simak baik-baik uraian berikut ini. Contoh Soal 1 Sebuah benda bermassa 2 kg bergerak dengan kecepatan awal 5 m/s di atas bidang datar licin, kemudian benda tersebut diberi gaya tetap searah dengan gerak benda. Setelah menempuh jarak 4 m, kecepatan benda menjadi 7 m/s. Tentukan besar gaya tersebut. Jawab Diketahui v0 = 5 m/s vt = 7 m/s m = 2 kg s = 4 m Ditanyakan Gaya F Untuk lebih jelas dalam memahami soal di atas, kita gambarkan terlebih dahulu ilustrasi gerak benda sebagai berikut. Karena kecepatan berubah atau tidak konstan v ≠ konstan, maka benda bergerak lurus berubah beraturan. Sehingga kita gunakan rumus kecepatan pada GLBB untuk menentukan besar percepatan. vt2 = v02 + 2as 2as = vt2 – v02 a = vt2 – v02/2s a = 72 – 52/24 a = 49 – 25/8 a = 24/8 a = 3 m/s2 Setelah besar percepatan kita dapatkan, langkah selanjutnya adalah menentukan besar gaya dengan menggunakan Hukum II Newton sebagai berikut. F = ma F = 23 F = 6 N Dengan demikian, gaya yang bekerja pada benda adalah 6 N Contoh Soal 2 Balok A bermassa 4 kg diletakkan di atas balok B yang bermassa 6 kg. Kemudian balok B ditarik dengan gaya F di atas lantai mendatar licin sehingga gabungan balok itu mengalami percepatan 1,8 m/s2. Jika tiba-tiba balok A terjatuh, maka berapakah percepatan yang dialami oleh balok B saja? Jawab Diketahui mA = 4 kg mB = 6 kg a1 = 1,8 m/s2 Ditanyakan Percepatan a Pada kasus ini ada dua kondisi gerak benda, yaitu kondisi pertama di mana balok A dan balok B bergerak secara bersama-sama dan kondisi kedua di mana balok B bergerak sendirian karna balok A terjatuh. Oleh karena itu, kita bahas satu-satu kondisi tersebut. Kondisi pertama Karena kedua balok bergerak secara bersama-sama, maka besar gaya dipengaruhi oleh gabungan massa kedua benda. Kita gunakan Hukum II Newton yaitu sebagai berikut. F = ma F = ma + mBa1 F = 4 + 61,8 F = 18 N Kondisi kedua Besarnya gaya F pada kondisi pertama juga masih berlaku untuk kondisi kedua, namun karena tidak balok A terjatuh, maka gaya F hanya bekerja pada balok B saja. F = mBa2 18 = 6a2 a2 = 18/6 a2 = 3 m/s2 Jadi, percepatan yang dialami balok B adalah sebesar 3 m/s2. Contoh Soal 3 Sebuah balok es yang memiliki massa 25 kg didorong Zeni dengan sudut 30°. Jika balok es bergerak dengan percepatan konstan sebesar 1/4√3 m/s2, maka tentukan besar gaya dorongan Zeni tersebut. Jawab Diketahui m = 25 kg a = 1/4√3 m/s2 θ = 30° Ditanyakan gaya dorong F Langkah pertama adalah menggambarkan diagram gaya yang bekerja pada objek. Seperti yang diperlihatkan pada gambar berikut ini. Tentu kalian tahu kalau balok es permukaannya licin, sehingga kita dapat mengabaikan gaya gesek. Oleh karena tidak ada gaya gesek, maka kita tidak perlu menentukan resultan gaya pada sumbu-Y vertikal. Berdasarkan Hukum II Newton, maka resultan gaya pada sumbu-X horizontal adalah sebagai berikut. FX = ma F cos θ = ma F cos 30° = 25 1/4√3 F1/2√3 = 25/4√3 F = 25/4√3/1/2√3 F = 25/2 F = 12,5 N Jadi, Zeni mendorong balok es tersebut dengan gaya sebesar 123,5 N Contoh Soal 4 Sebuah balok bermassa 20 kg berada di atas lantai mendatar. Kemudian balok ditarik dengan gaya sebesar F mendatar. Apabila koefisien gesek statis sebesar 0,6, koefisien gesek kinetis sebesar 0,3 dan g = 10 m/s2, maka tentukan gaya gesek yang dirasakan balok dan percepatan balok jika F = 100 N F = 140 N Jawab Diketahui m = 20 kg μs = 0,6 μk = 0,3 g = 10 m/s2 Ditanyakan Gaya gesek f­­ dan percepatan a Langkah pertama, kita gambarkan terlebih dahulu diagram gaya-gaya yang bekerja pada benda secara lengkap seperti yang terlihat pada gambar berikut. Berdasarkan diagram gaya yang bekerja pada balok di atas, besarnya gaya normal dapat ditentukan dengan menggunakan Hukum II Newton sebagai berikut. FY = ma N – w = ma Karena tidak terjadi gerak dalam arah vertikal, maka a = 0 sehingga N – w = 0 N – mg = 0 N = mg N = 2010 N = 200 N Langkah selanjutnya adalah menentukan pengaruh gaya F dengan cara menghitung dahulu besar gaya gesek statis maksimumnya fs maks fs max = μsN fs max = 0,6200 fs max = 120 N F = 100 N F fs max berati balok bergerak bekerja gaya gesek kinetis fk dan berlaku Hukum II Newton sebagai berikut. FX = ma F – fk = ma F – μkN = ma 140 – 0,3200 = 20a 140 – 60 = 20a 80 = 20a a = 4 m/s2 Jadi, dengan gaya tarik sebesar 140 N, besar percepatan gerak benda adalah 4 m/s2. Contoh Soal 5 Anis menarik sebuah balok yang bermassa 10 kg dengan gaya sebesar 100 N dengan arah membentuk sudut 37° terhadap lantai. Koefisien gesek statis dan kinetis benda terhadap lantai adalah 0,5 dan 0,4. Jika percepatan gravitasi di tempat itu adalah 10 m/s2. Maka tentukan bergerak atau tidak benda tersebut. jika bergerak tentukan percepatannya. Jawab Diketahui m = 10 kg F = 100 N θ = 37° μs = 0,5 μk = 0,4 g = 10 m/s2 Ditanyakan diam atau bergerak, jika bergerak berapa a. Seperti biasa, langkah pertama adalah menggambarkan diagram gaya yang bekerja pada benda tersebut, seperti yang ditunjukkan pada gambar di bawah ini. Langkah kedua adalah menentukan besar gaya normal N dengan menggunakan Hukum I Newton sebagai berikut. FY = 0 N + F sin θ – w = 0 N = w – F sin θ N = mg – F sin θ N = 1010 – 100sin 37° N = 100 – 1000,6 N = 100 – 60 N = 40 N Langkah selanjutnya adalah menghitung dahulu besar gaya gesek statis maksimumnya fs maks sebagai berikut. fs maks = μsN fs maks = 0,540 fs maks = 20 N Karena F = 100 N > fs maks maka balok yang ditarik Anis sudah bergerak sehingga bekerja gaya gesek kinetik fk. Dengan menggunakan Hukum II Newton, maka percepatan gerak balok adalah sebagai berikut. FX = ma F cos θ – fk = ma F cos θ – μkN = ma 100cos 37° – 0,440 = 10a 1000,8 – 16 = 10a 80 – 16 = 10a 64 = 10a a = 6,4 m/s2 Jadi, balok tersebut bergerak dengan percepatan sebesar 6,4 m/s2. Demikianlah artikel tentang kumpulan contoh soal dan pembahasan tentang gerak benda di bidang datar beserta gambar. Semoga dapat bermanfaat untuk Anda. Apabila terdapat kesalahan tanda, simbol, huruf maupun angka dalam perhitungan mohon dimaklumi. Terimakasih atas kunjungannya dan sampai jumpa di artikel berikutnya.

Sebuah balok bermassa 5 kg. Jika percepatan gravitasi ( g ) = 10 m/s2 maka tentukan: 1. Berat balok, 2. Gaya normal jika balok diletakkan di atas bidang datar, 3. Gaya normal yang bekerja pada balok jika diam di atas bidang miring yang membentuk sudut 30o terhadap horisontal. Penyelesaian : m = 5 kg g = 10 m/s2 a. Berat balok adalah : w = m
Pengertian Hukum Pertama Newton. Hukum Newton merupakan pengembangan dari teori yang dikemukakan oleh ilmuwan bernama Galileo. Hukum Newton I menjelaskan, bahwa jika resultan gaya dari suatu benda adalah sama dengan nol, maka benda yang posisinya diam akan tetap diam dan bedan yang sedang bergerak akan tetap bergerak dengan kecepatan konstan. Secara matematis hukum Newton I dapat diformulasikan sebagai berikut.∑F = 0Dari hukum Newton tersebut, dapat dipahami bahwa suatu benda akan cenderung mempertahankan keadaannya. Benda yang keadaan awalnya diam akan bertahan untuk tetap diam. Sebaliknya benda yang sedang bergerak akan cenderung tetap bergerak. Kesimpulan hukum Newton I sering disebut sebagai hukum inersia atau hukum Penerapan Hukum Pertama Newton Contoh penerapan dari hukum Newton I adalah ketika berada dalam kendaraan yang sedang bergerak cepat kemudian berhenti secara tiba-tiba bisa kareana direm tiba-tiba atau bertabrakan, maka semua muatan baik sopir, penumpang atau benda lain yang ada di dalam kendaraan akan terdorong ke depan. Dorongan ke depan inilah yang menjelaskan kecenderungan benda yang bergerak akan bertahan untuk tetap Soal Perhitungan Hukum I NewtonTiga buah gaya, F1 = 20 N dan F2 = 25 N, dan F3 = c N bekerja pada sebuah benda, seperti ditunjukkan pada gambar berikut. Jika benda tetap diam, berapakah F3 atau c ?Soal Ujian Rumus Perhitungan Hukum I NewtonJawabKarena benda diam, sesuai dengan Hukum Pertama Newton,F = 0F1 + F2 – F3 = 0sehingga diperolehF3 = F1 + F2 = 20 + 25 = 45 NContoh Soal Rumus Perhitungan Hukum 1 NewtonGambar di bawah, menunjukkan sebuah benda yang mempunyai massa 10 Kg sedang digantung dengan tali. Jika percepatan grafitasi bumi di tempat itu g = 10 m/s2, maka hitunglah besar gaya tegang taliContoh Soal Perhitungan Rumus Hukum 1 NewtonPenyelesaiannyaDiketahui m = 10 kg; g = 10 m/s2Ditanya besar gaya tegang tali TF = 0T – W = 0T = W = m . gT = 10 x 10 = 100 NSoal Soal Lainnya Beserta Pembahasan Ada Di Akhir ArtikelHukum Kedua Newton Hukum Newton I hanya membahas gaya yang bekerja pada benda yang bergerak atau diam tanpa adanya pengaruh gaya dari luar. Hal ini artinya benda tidak mengalami perubahan kecepatan. Kecepatan selalu konstan, sehingga tidak ada Newton II menjelaskan bahwa percepatan benda yang disebabkan oleh resultan gaya yang bekerja pada suatu benda adalah berbanding lurus dengan resultan gayanya, dan berbanding terbalik dengan massa dari bendanya. Secara matematis hukum Newton II dapat diformulasikan sebagai berikut.∑F = m x aKeterangana = percepatan benda ms-2∑F = resultan gaya yang bekerja pada benda Nm = massa benda kgDari formulasinya dapat diketahui bahwa Hukum Newton II dapat menjelaskan pengaruh dari perubahan kecepatan dan massa suatu benda terhadap besarnya resultan gaya yang bekerja pada suatu benda. Jika benda bergerak dengan percepatan yang lebih tinggi, maka resultan gaya yang dihasilkan juga semakin tinggi. Resultan gaya akan menjadi lebih besar ketika benda bergerak dengan percepatan lebih besar. Resultan gaya akan menjadi besar pada benda yang massanya lebih besar dan bergerak dengan percepatan yang Perhitungan Hukum Kedua massa truk yang sedang bergerak dengan percepatan 2 m/s dan menghasilkan gaya 8000 Formula dari Hukum Newton II adalah ∑F = m x a∑F = Na = 2 m/smaka massa truk adalah∑F / a = mm = m/s = 4000 kg ataum = 4 Soal Perhitungan Hukum 2 buah gaya masing-masing 100 N bekerja pada benda 50 kg, seperti terlihat pada resultan gaya percepatannya?Soal Ujian Rumus Hukum 2 NewtonJawab1. Gunakan aturan vektor dalam menjumlahkan gaya. Oleh karena F1 dan F2 saling tegak lurus maka sesuai dengan Dalil PythagorasFR = √F12 +F22FR = √1002 +1002FR = √ = 100√2 N2. massa benda 50kg, maka percepatannya adalaha =FR/ma = 100√2 N/50a = 2 √2 m/s2Soal Soal Lainnya Beserta Pembahasan Ada Di Akhir ArtikelHukum Ketiga Newton III menjelaskan jika benda A memberikan gaya pada benda B, maka benda B akan memberikan gaya pada benda A, yang besarnya sama tetapi arahnya ini menjelaskan bahwa suatu gaya yang bekerja pada sebuah benda selalu diimbangi dengan gaya dari benda lain. Artinya, tidak ada gaya bekerja yang hanya melibatkan satu benda. Gaya yang terlibat setidaknya memerlukan dua benda yang saling berinteraksi. Pada interaksi ini gaya-gaya berkerja selalu berpasangan dan berlawanan benda A memberikan gaya sebesar Faksi pada benda B, maka benda B akan memberikan gaya sebesar Freaksi pada A. Pasangan gaya inilah yang dikenal dengan pasangan aksi reaksi. Diketahui bahwa gaya aksi dan reaksi besarnya sama namun arahnya berlawanan. Arah berlawanan dinotasikan dengan tanda negatif -.Hukum ini dapat dinyatakan dengan “setiap ada aksi, selalu ada suatu reaksi yang nilainya sama besar namun arahnya berlawanan”. Secara matematis hukum III Newton dapat diformulasikan sebagai = -FreaksiContoh Hukum Newton 3Contoh yang dapat menunjukkan gaya aksi reaksi adalah seseorang yang sedang menembak. Pada saat menembakkan peluru peluru keluar dari laras senjata ke arah depan ini sebagai gaya aksi. Sebagai gaya reaksinya adalah peluru memberikan gaya yang berlawanan dengan arah gerak peluru, sehingga penembak terdorong ke belakang. Gaya aksi-reaksi inilah yang menyebabkan penembak terlihat tersentak ke belakang sesaat setelah senjata mengeluarkan Contoh Soal Ujian Hukum Newton 1 2 3 1. Contoh Soal Ujian Menghitung Massa Benda Hukum NewtonPerhatikan gaya gaya yang bekerla pada balok seperti pada gambar berikutContoh Soal Ujian Menghitung Massa Benda Hukum NewtonBalok bergerak dengan percepatan 5 m/s2. Hitunglah massa balok tersebutDiketahuiF1 = 35 N arah ke kiriF2 = 15 N arah ke kiriF3 = 60 N arah ke kanana = 5 m/s2Jawab∑ F = F3 – F1 – F2∑ F = 60 – 35 – 15∑ F = 10 NTanda pisitif menunjukkan arah gaya ke kanan, sehingga balok bergerak ke kanan∑ F = = F/am = 10/5m = 2 kgJadi balok yang sedang bergerak memiliki massa 2 Contoh Soal Hukum Newton Rumus Menghitung Percepatan Balok BergerakTiga gaya berkerja pada balok bermassa 5 kg yang sedang Soal Hukum Newton Rumus Menghitung Percepatan Balok BergerakHitunglah percepatan balok tersebutDiketahuiDiketahuiF1 = 30 N arah ke kiriF2 = 10 N arah ke kananF3 = 15 N arah ke kananm = 5 kgJawab∑ F = F3 + F2 – F1∑ F = 15 +10 – 30∑ F = – 5 NTanda negative menunjukkan arah gaya kiri warna merah sehingga balok bergerak ke arah kiri.∑ F = F/ma = 5/5a= 1 m/s2Jadi balok bergerak dengan percepatan 1 m/ Contoh Soal Ujian Hukum Newton Menghitung Percepatan Benda Sebuah balok bermassa 5 kg ditarik oleh sebuah gaya F sehingga mengalami percepatan sebesar 2 m/s2 seperti ditunjukkan pada gambar berikutContoh Soal Ujian Hukum Newton Menghitung Percepatan BendaApabila di atas balok tersebut ditambah balok dengan berat 3 kg, Hitung percepatan kedua balok saat ditarik dengan gaya F yang = 5 kga1 = 2 m/s2massa balok setelah ditambah balok 3 kgm2 = 5 + 3 kgm2 = 8 kgJawabResultan Gaya pertama sebelum penambahan balok atau awal∑ F1 = F1 = 5 x 2 = 10 Nresultan gaya ke dua setelah ditambah balok 3 kg∑ F2 = F2 = 8 x a2Resultan gaya pertama dan ke dua adalah sama∑ F1 = ∑ F210 = 8 x a2a2 = 10/8a2 = 1,25 m/s2Jadi percepatan balok setelah ditambah balok di atasnya adalah 1,25 m/ Contoh Soal Newton Menghitung Tegangan Tali Bergerak Ke AtasSebuah balok bermassa 10 kg ditarik oleh tali ke arah atas sehingga balok mengalami percepatan 1 m/s2 seperti pada gambar di bawah. Hitung tegangan yang dialami oleh tali tersebut?Contoh Soal Newton Menghitung Tegangan Tali Bergerak Ke AtasDiketahuiaY = 1 m/s2m = 10 kgFB = berat balokFB = = 10 x 9,81FB = 98,1NResultan gaya arah ke atas arah sumbu-Y dapat dinyatakan dengan persamaan berikut∑FY = FY = gaya arah sumbu-YaY = percepatan arah sumbu-YAsumsi arah ke atas adaah positif∑FY = FT – FB = atauFT = FB + FT = 98,1 + 10 1FT = 108,1 NJadi tegangan tali yang menarik balok dengan percepatan 1 m/2 adalah 108,1 N. tegangan tali ini lebih besar dari gaya berat balok Contoh Soal Mengitung Gaya Tali Lift Hukum NewtonSebuah lift bergerak ke atas dengan percepatan 2 m/s2. Jika massa lift dan isinya 200 kg, tentukanlah tegangan tali penarik lift tersebut. Percepatan gravitasi bumi g = 10 m/ = 200kga = 2 m/s2JawabGaya yang bekerja pada lift adalah berat dan tegangan tali seperti diperlihatkan pada gambar berikutContoh Soal Mengitung Gaya Tali Lift Hukum NewtonLift bergerak dengan suatu percepatan ke atas, sesuai Hukum Kedua Newton, maka system tersebut dapat dinyatakan dengan rumus berikut∑FY = T – FB = T – = T = + T = m g + aYDengan demikianT = 200 kg10 m/s2 + 2 m/s2T = tegangan yang dialami oleh tali lift saat menarik bebannya adalah N6. Contoh Soal Menghitung Koefisien Gesek Hukum Newton,Sebuah balok bermassa 10 kg ditarik di atas lantai dengan gaya 20 N sehingga bergerak dengan laju konstan. Hitunglah koefisein gesek yang bekerja pada antar muka balok dan Soal Menghitung Koefisien Gesek Hukum Newton,Diketahuim = 10 kgFX = 20 NRumua Koefisien Gesek Nilai koefisien gesek dapat dinyatakan dengan rumus persamaan berikutm = FG/FNMenghitung Resultan Gaya Arah Sumbu-Y∑FY = atau∑FY = FN – FB = FB = = 0, karena tidak bergerak pada arah sumbu-Y. Tidak bergerak ke atas atau ke – FB = FN – 10 x 9,81= 10 x 0FN = 98,1 N gaya normalMenghitung Resultan Gaya Arah Sumbu-XResultan Gaya yang bekerja pada balok dapat dinyatakan dengan rumus berikut∑FX = ∑FX = FX – FG = atauaX = 0, karena laju pergerakan balok tetap,20 – FG = 10 x 0FG = 20 NDengan demikian koefisien geseknya adalahm = FG/FNm = 20/98,1m = 0,204jadi koefisien antamuka balok lantai adalah 0,2047. Contoh Soal Menghitung Tegangan Maksimum Tali Hukum NewtonSebuah mobil bermassa 800 kg diderek dengan menggunakan tali. Namun tali derek akan putus jika tegangan yang dialaminya melebihi 1600 N. Hitung percepatan terbesar mobil bergerak agar tali tidak putus..Contoh Soal Menghitung Tegangan Maksimum Tali Mobil Hukum NewtonDiketahuim = 800 kgF = 1500 NGaya arah sumbu-Y tidak diperhitungkan, karena saling menyeimbangkan atau ∑FY = gaya arah sumbu-X dapat dinyatakan dengan rumus berikut∑FX = ∑FX = 1600 = 800 x aXax = 1600/800ax = 2,0 m/s2Jadi percepatan tertinggi yang bisa dicapai oleh mobil agar tali derak tidak putus adalah 2 m/ Contoh Soal Menghitung Gaya Untuk Menghentikan Mobil Hukum NewtonTentukan resultan sebuah gaya yang diperlukan untuk menghentikan mobil bermassa kg yang sedang bergerak dengan kelajuan 36 km/jam dalam jarak 25 = kg,v0 = 36 km/jam = 10 m/s,s = jarak sampai berhentis = 25 konsep GLBB geral lurus berubah beraturanv = v0 + at,a = percepatan perlambatan yang diperlukan supaya mobil berhenti,v1 = 0, saat mobil berhentiBesar perlambatan dapat dihitung dengan persamaan berikuta = [v12 – v02]/2sa = [v12 – v02]/2sa = [0 – 102]/[2 x 25]a = -2 m/s2Dengan demikian, sesuai dengan Hukum Kedua Newton,F = = kg–2 m/s2 = – NTanda negatif menunjukkan bahwa resultan gaya yang diberikan harus berlawanan arah dengan kecepatan awal benda. Jadi, besarnya resultan gaya yang harus diberikan adalah N dan berlawanan arah dengan gerak Soal Menghitung Gaya Normal Pada Bidang Miring Hukum NewtonBenda bermassa 10 kg terletak diam di atas sebuah bidang. Tentukanlah gaya normal yang bekerja pada benda Ketika berada pada bidang datar, dan pada bidang yang membentuk sudut 30° terhadap bidang datar. Nilai konstanta gravitasi, g = 10m/ Gaya Normal Pada Bidang DatarGaya yang bekerja Pada Benda adalah gaya berat FB dan Gaya normal = = 10 kg10 m/s2 = 100 NKarena benda diam, sesuai dengan Hukum Pertama Newton, resultan gayanya harus sama dengan nol, sehingga dapat dinyatakan dengan rumus berikut∑F = FN – FB = 0FN – 100 = 0FN = 100 NSehingga gaya Normal benda pada bidang datar adalah = 100 NRumus Gaya Normal Pada Bidang MiringGaya yang bekerja pada balok di bidang miring dapat dilihat pada gambar berikutContoh Soal Menghitung Gaya Normal Pada Bidang Miring Hukum NewtonUntuk mendapatkan besar gaya normal, uraikan berat FB ke sumbu-y sumbu-y berimpit dengan N dan = FB cos θ0 = 100 1/2 √3 = 50√3 NPada sumbu-y balok diam, maka∑Fy = 0 FN – = 0FN = = 50√3 NBensin Pengertian Standar Uji Penentuan Komposisi Bilangan Oktan Reaksi Pembuatan Kegunaan Dampak Kesehatan LingkunganPengertian Bensin – Gasoline Bensin merupakan fraksi minyak bumi yang terdiri dari campuran senyawa hidrokarbon yaitu alkana berrantai karbon lurus b...Hukum Newton 1, 2, 3 Pengertian Contoh Soal Rumus PerhitunganPengertian Hukum Pertama Newton. Hukum Newton merupakan pengembangan dari teori yang dikemukakan oleh ilmuwan bernama Galileo. Hukum Newton I menjelaskan, ...Menghitung Biaya Energi Listrik Rumah/KantorPengertian Energi Listrik. Energi listrik merupakan daya listrik yang terpakai selama waktu tertentu. Besarnya Energi listrik yang digunakan untuk suatu...Pengertian Contoh Perhitungan Hukum OhmPengertian Hukum Ohm. George Simon Ohm adalah orang pertama yang menemukan hubungan antara kuat arus listrik yang mengalir melalui penghantar yang b...Pengertian Perhitungan Gerak Lurus BeraturanPengertian Gerak Lurus Beraturan. Suatu benda dapat dikatakan bergerak apabila posisi atau kedudukannya atau tempatnya berubah terhadap sebuah titik ...Pengolahan Air Limbah Secara Pengolahan Air Metoda Adsorpsi. Pengolahan air secara adsorpsi merupakan proses pemisahan air dari pengotornya dengan cara penyerapan pengotor...Pengolahan Air Minum Dengan Penyaringan, FiltrasiKonsep dasar dari pengolahan air dengan cara penyaringan adalah memisahkan padatan atau koloid dari air dengan menggunakan alat penyaring, atau saringan....Pengolahan Air Minum, Water TreatmentPengertian Pengolahan Air Minum Pengolahan air minum merupakan proses pemisahan air dari pengotornya secara fisik, kimia dan biologi. Tujuan utama dari...Pengolahan Minyak Jelantah Menjadi Minyak Jelantah, Sebagai Limbah Cair Rumah Tangga. Istilah minyak jelantah merujuk pada suatu jenis minyak yang diperoleh dari sisa penggorengan...Proses Gasifikasi Konversi Batubara Menjadi GasPengertian Gasifikasi. Gasifikasi adalah proses konversi bahan bakar padat menjadi gas melalui reaksi dengan satu atau campuran reaktan udara, oksigen, ...Daftar PustakaSears, – Zemarnsky, MW , 1963, “Fisika untuk Universitas”, Penerbit Bina Cipta, Bandung,Giancoli, Douglas C. 2000. Physics for Scientists & Engineers with Modern Physics, Third Edition. New Jersey, Prentice David, Robert Resnick, Jearl Walker. 2001. Fundamentals of Physics, Sixth Edition. New York, John Wiley & Paul, 1998, “Fisika untuk Sains dan Teknik”, Jilid 1,Pernerbit Erlangga, alih bahasa Prasetyo dan Rahmad W. Adi, Paul, 2001, “Fisika untuk Sains dan Teknik”, Jilid 2, Penerbit Erlangga, alih bahasa Bambang Soegijono, Aby Sarojo, 2002, “Seri Fisika Dasar Mekanika”, Salemba Teknika,Giancoli, Douglas, 2001, “Fisika Jilid 1, Penerbit Erlangga, 2019, “Asumsi Hukum Newton, Contoh Soal Perhitungan Hukum Pertama Newton, Contoh Soal Ujian Hukum Newton, Menghitung Percepatan massa dan resultan gaya hokum newton, Pengertian Contoh Soal Hukum Pertama Newton, Pengertian Contoh Soal Perhitungan Hukum Kedua Newton 2, 2019, “Pengertian Hukum Newton pertama kedua dan ketiga, Persamaan Rumus hukum Newton 1, Rumus Persamaan Hukum Newton 1 2 dan 3, Contoh Soal Rumus Hukum 1 Newton, Satuan Gaya Hukum Newton, 2019, “Contoh Penerapan Hukum Newton, Bunyi Pernyataan Hukum Newton 1 2 3, Bunyi Pernyataan Hukum Newton, Satuan Gaya Newton,
. 383 168 356 113 334 481 156 327

jika gaya gesek diabaikan maka percepatan balok adalah